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Abstract 

Owing to the breakdown of Friedel's law when 
anomalous scatterers are present, unique values of 
the three-phase structure invariants in the whole 
range from 0 to 2rr are determined by measured 
values of diffraction intensities alone. Two methods 
are described for going from presumed known values 
of these invariants to the values of the individual 
phases. The first, dependent on a scheme for resol- 
ving the 2rr ambiguity in the estimate toHr of the 
triplet ~H + tpK + ~p-n-~:, solves by least squares the 
resulting redundant system of linear equations ~n + 
~pK + ~p-a-K = tonK. The second attempts to mini- 
mize the weighted sum of squares of differences 
between the true values of the cosine and sine 
invariants and their estimates. The latter method is 
closely related to one based on the 'minimal prin- 
ciple' which determines the values of a large set of 
phases as the constrained global minimum of a 
function of all the phases in the set. Both methods 
work in the sense that they yield values of the 
individual phases substantially better than the values 
of the initial estimates of the triplets. However, the 
second method proves to be superior to the first but 
requires, in addition to estimates of the triplets, 
initial estimates of the values of the individual 
phases. 

1. Introduction 

The presence of one or more anomalous scatterers in 
a crystal has important implications for X-ray crys- 
tallography which stem from the breakdown of 
Friedel's law. Bijvoet (1949) appears to have been the 
first to recognize the importance of this effect when 
he exploited it to determine absolute configuration. 

It is also known that anomalous dispersion sup- 
plements, in an important way, the method of 
isomorphous replacement for the determination of 
macromolecular structure. Recent developments, by 
using anomalous intensity data collected at two or 
more different wavelengths [see e.g. Karle (1984) and 
Hendrickson, Smith, Phizackerley & Merritt (1988)] 
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or by integrating anomalous dispersion with the 
traditional techniques of direct methods, have led to 
new phasing methods for macromolecular structures 
which promise to strengthen the standard techniques. 

It has been known for some time that the avail- 
ability of single-wavelength anomalous-dispersion 
data determines unique values of the three-phase 
structure invariants; and methods for estimating 
their values are now known. In this paper two 
methods are described for obtaining the values of the 
individual phases from the values of the triplets, 
which are presumed to be known. In the first, esti- 
mates of the triplets themselves are used to construct 
a redundant system of linear equations which is 
solved by least squares and which incorporates a 
scheme for resolving the 2~r ambiguity inherent in 
such a formulation. This method determines the 
values of the phases ab initio, which is to say that it 
does not require any prior structural knowledge or 
initial estimates for the values of the phases. 

The second method employs the estimates of the 
cosines and sines of the structure invariants (rather 
than the invariants themselves) to define a function 
of the phases, the global minimum of which is 
reached when the phases are set equal to their true 
values. In contrast to the first method, this one does 
require some prior structural knowledge or initial 
estimates of the values of the individual phases and 
is, therefore, to be regarded as a technique for phase 
refinement rather than an ab initio method of phase 
determination. It has the advantage, however, that it 
yields better values for the individual phases. 

The first attempt, by algebraic means, to combine 
the traditional direct-methods techniques with 
anomalous dispersion appears to have been made by 
Kroon, Spek & Krabbendam (1977) who showed 
how to derive phase information (but not explicit 
formulas for the triplets themselves) in terms of the 
Bijvoet inequalities. [See also Karle (1984) for related 
work.] This work was soon followed by a probabilis- 
tic version (Heinerman, Krabbendam, Kroon & 
Spek, 1978) which employed the triplet amplitudes 
rather than the magnitudes of the individual 
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normalized structure factors L EI. Although Heiner- 
man et al. did suggest that the joint probability 
distribution of the six structure factors En, EK, 
E_ n -  K, E_ n, E_ K, En + K might lead to improved 
results, no one appears to have anticipated that the 
six magnitudes IEHI, [EKI, IE-H-KI, IE-nl, 
IE-KL and IEn+KL would actually yield unique 
estimates for the triplets ~on + ~oK + ~0_ H-K until this 
work was actually done (Hauptman, 1982; Gia- 
covazzo, 1983). The reader is referred to Fortier 
(1991) and Krabbendam ( 1991) for additional details 
of the historical background. 

2. Evaluation of the estimated structure invariants 

The latest developments of direct methods have pro- 
vided several new probabilistic formulas to estimate 
the structure-invariant values more accurately 
(Hauptman, 1982; Giacovazzo, 1983; Peschar & 
Schenk, 1987). Some of these new formulas, for 
example the formulas dependent on anomalous scat- 
tering data, yield unique estimates for the structure 
invariants instead of their cosines alone. The quality 
of these estimates can be evaluated in three aspects: 
(i) they should not be strongly biased compared to 
the true invariant values; (ii) the weight function, 
called A values in Hauptman's formula [not to be 
confused with the AnK of equation (10)] should 
reflect the reliability of each individual estimate; (iii) 
any set of invariants, linear combinations of three 
phases, should satisfy the quadrupole identities at 
least approximately (Viterbo & Woolfson, 1973). In 
short, a set of well estimated invariants must have 
small quadrupole residuals. 

A complete evaluation has been carried out for the 
known 134-amino-acid protein structure, PtC142- 
derivative of cytochrome c550, space group P2~212~ 
with a = 42.70, b = 82.17, c = 31.56/k (Timkovich & 
Dickerson, 1973, 1976). The coordinates and the 
experimental structure factors were obtained from 
the Protein Data Bank (Bernstein et al., 1977). There 
are 1018 atoms in the coordinate listing and 2996 
unique measured structure factors to 2.5 A, resolu- 
tion. There are no anomalous-dispersion data 
available for this structure. A simulated anomalous- 
dispersion data set was obtained as follows. 

First, the magnitudes IFHI and IFrl[ were calcu- 
lated from the known structure for all 2996 reflec- 
tions with measured intensities. Of these, 503 pairs of 
the more intense reflections had a calculated 
difference IIF.I- IFrfl[ which was at least 2% of 
IFnl. (Current X-ray technology permits a 2% 
difference to be measured.) Next, to each experimen- 
tally measured magnitude I FHlexp, an amount equal 
to 1% of the calculated difference IIF.I- I~11 was 
added and subtracted in order to get the simulated 
Friedel pair IFnl, IFnl. Then, 25244 structure 

Table 1. 25 244 estimated structure invariant values 
from the 503 Friedel pairs of  anomalous data, using 

(4) 
To show their  unbiased features the values are sor ted  into two groups;  one  
conta ins  all es t imated  values smaller  than  the true values (0 < w,,~ - to,,, < 
180 ° , the two lef t -hand columns) ,  the o ther  conta ins  est imates  larger than  
the true values (0 < we,, - to,,,, < 180 °, the two r igh t -hand  columns) .  

A No.  (Iw .....  I) (°) No.  (Iw .....  I) 
2.5 2 72.0 0 
2.4 3 I 17.6 0 
2.3 1 66. I 1 80.0 
2.2 I 124.3 3 23.3 
2.1 5 33.5 3 46.1 
2.0 10 31.2 4 91.5 
1.9 9 47.5 6 36.9 
1.8 10 56.0 3 10.3 
1.7 14 78.2 6 46.2 
1.6 33 48.7 21 48.4 
1.5 30 69.0 31 49.3 
1.4 41 60.1 38 58.5 
1.3 80 58.8 56 55.6 
1.2 121 57.5 99 48.4 
1.1 190 61.2 178 55.2 
1.0 295 64.7 284 53.4 
0.9 476 60.8 456 59.4 
0.8 758 58.6 731 63.0 
0.7 1249 63.2 1186 62.1 
0.6 1819 65.9 1851 66.5 
0.5 2694 70.7 2660 67.9 
0.4 2992 73. I 2929 72.2 
0.3 1770 75.9 1763 73. I 
0.2 183 78.5 149 77.1 

(o) 

invariants were estimated by means of Hauptman's 
probabilistic formula [Hauptman, 1982, equation 
(3.65)], the conditional probability distribution of the 
triplet/2 (2), given the six magnitudes (3): 

P(/2[[EHI, IEKI, [E-H-KI, IE-HI, IE-KI, IEH+Kll) 

= (1/C)exp[Acos(/2- tO)] (1) 

where/2 represents the triplet: 

/ 2  = ~0H "~- ~DK -~- ~ -  H -  K" (2) 

The six magnitudes (in general distinct because of the 
breakdown of Friedel's law), 

[EHI, IEKI, IE-H-KI, Ig-n[, IE-KI, IEH+KI, (3) 

constitute the first neighbourhood of the triplet /2. 
The parameters C, A and tO of the distribution (1) 
are explicitly expressed in terms of the six magni- 
tudes (3) and the atomic scattering factors, in general 
complex because of the anomalous dispersion, of the 
atoms in the crystal. Since the distribution (1) has a 
unique maximum a t / 2  = tO in the whole interval (0, 
2zr), (1) yields the estimate 

~0H + ~ K  -~- ~ 0 -  H -  K = tO. (4) 

These 25 244 structure invariants were used to gener- 
ate 221 057 quadrupole identities. 

The results of these estimates are listed in Table 1. 
The average value of the absolute error for all 25 244 
invariants is (]toerrorl)= 68.2°; the average value of 
the signed error is (toerror) = 2"1°; if the A values are 
used as a weight function when averaging, 
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(Itaerrorl) is reduced to 65.9 °. Among the 25 244 
invariants, 999 with A > 1.0 give (Itaerrorl)= 56"2°; 
24 245 with A < 1.0 give (Itaer~orl)-----68.7 °. Column 
three of Table 1, with 12 786 invariants, has (]taerrori) 
= 68.9 ° and column five, with 12 458 invariants has 
(]taerror]) = 67.45 °- The calculated quadrupole resid- 
ual is 8.2 °. All of these statistics show that (i) the 
estimated values, to, are unbiased, (ii) A values are 
meaningful and (iii) the quadrupole residual is small. 

3. The 2~- ambiguity 

In view of (1)-(4), formulas having probabilistic 
validity are now available which yield unique esti- 
mates (and measures of reliability) for the three- 
phase structure invariants (triplets), ~OH+ ~OK+ 
~0-H-K = tanK, provided that anomalous-dispersion 
data are available (Hauptman, 1982; Giacovazzo, 
1983). The existence of these formulas raises the 
question: Is it possible to go from estimates of the 
structure invariants to the values of the individual 
phases or, to put it another way, can one solve the 
redundant system of linear equations 

~'H + ~0X + ~0-H-X = WHX + 2rrN; (5) 

for the unknown phases ~o when the estimates tonic 
are presumed to be known? The problem is compli- 
cated by the fact that, although unique estimates for 
the taHK in the interval 0 to 2zr are known, an integer 
multiple of 2zr [2~rNi in (5)], unknown a priori, must 
be added to these estimates if the system of equations 
(5) is to be consistent (Woolfson, 1977). The resolu- 
tion of this 2Tr ambiguity has been described in a 
recent paper (Han, DeTitta & Hauptman,  1991). 
Briefly, the values of three origin-fixing phases are 
arbitrarily specified, an additional p (say ten) 
unknown phases are selected, q > p triplets are gener- 
ated from these p + 3 phases, in this way leading to a 
system of q equations (5). From this system of 
equations a suitably chosen linearly independent 
subset consisting of p equations in the p unknown 
phases is chosen. The solution of this system of 
equations yields initial estimates for the values of the 
p unknown phases. The 2zr ambiguity in the estimate 
of the tank is no problem at this stage since the 
addition of an arbitrary integer multiple of 217" to the 
right-hand sides of the system (5) merely adds a like 
multiple of 2~r to an individual phase ~o because the 
number of equations is equal to the number of 
unknowns. Once initial estimates of the p unknown 
phases ~0 are determined, they may be improved by 
solving the full redundant system of q (>  p) equa- 
tions (5) involving the initial p phases. Since initial 
estimates of these p phases are now available the 2zr 
ambiguity is readily resolved by calculating the left- 
hand side of each equation (5) and adding a suitable 
integer multiple of 2zr to the estimate on the right- 

hand side in such a way as to insure approximate 
equality. A least-squares adjustment in the initial 
estimates of the p unknown phases then suffices to 
obtain better estimates of their values. 

With refined values of the starting set of p + 3 
phases available, additional phases are obtained, one 
at a time, as follows. A new phase ~0H is selected and 
used to generate all triplets involving ~on and the 
starting set of p + 3 phases, in this way adjoining an 
additional ql equations (5) to the q equations (5) 
already used. If ~0n is restricted to lie in the interval 0 
to 2Tr, and the known values of the initial p + 3 
phases ~o and the known estimates on the right-hand 
side of (5) are employed, then the number of 
unknown integer multiples of 2zr to be added to the 
right-hand side of each equation (5) is greatly restric- 
ted. In fact, a simple argument shows that for the 
additional ql equations (5) involving the single 
unknown phase 60H there are precisely q~ + 1 differ- 
ent sets of additive integer multiples of 2zr (Han et 
al., 1991). The least-squares solution of each of these 
q~ + 1 systems of equations (5), each consisting of q 
+ ql equations in p + 1 unknowns, yields q~ + 1 sets 
of values for the p + l  unknown phases. The best 
solution is selected by choosing the one with the 
smallest residual. The process is repeated and, in the 
later stages, combined with the tangent formula to 
yield values of individual phases with average errors 
of approximately 30 ° when estimates of the structure 
invariants having average errors of 65 ° are available. 
Details of the applications are described in the next 
section. 

4. Least-squares solution of the structure-invariant 
equations 

The structure invariants are the linear combinations 
of phase angles (5). When we directly use these 
equations, the integer N's have to be taken into 
account. However, the linear-equation method uses a 
set of these equations which are sufficient in number 
to solve for values of an equal number of phases. In 
the situation where the number of unknowns and the 
number of linear equations are exactly equal it is 
possible to arbitrarily assign the integer portions. 
This method will allow us to have a small starting set 
of phases without consideration of the integer prob- 
lem. This starting equation set must (i) be linearly 
independent; (ii) have a number of equations equal 
to the number of unknowns; (iii) have good esti- 
mated invariant values; and (iv) interact strongly 
with other invariants. The best place to find the 
required set of these equations is at the bottom of a 
special convergence map. For our test data set, the 
first linear equation set contains seven invariants, ten 
phases are involved and among them three are 
origin-fixing reflections. The average A value of these 
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seven invariants is 1.03, which is somewhat larger 
than the average of the total. The origin-fixing 
reflections are treated as discussed in a previous 
publication (Han et al., 1991). 

The second step resolves the integer problem in a 
different way. It uses the results of the starting 
equations to calculate the integer portion of all the 
invariants (11 in this case) which involve only the 
first ten phases (only seven of which are to be 
determined since three serve to fix the origin). By 
combining the estimated values of the triplets and 
the calculated integers, a set of overdetermined linear 
equations (11 equations with seven unknowns) is 
obtained and solved by a full-matrix least-squares 
method. 

When any invariant involves other than the first 
ten phases, the integer problem has to be considered. 
To simplify the procedure of finding correct integers, 
we add only one phase at a time. As described above 
for one 'new phase' and m more 'new invariants' 
only a few possible integer sets need be tested. Based 
on the fact that the correct integers should normally 
give smaller residuals for the equations, we only need 
to keep one or a few sets of the results which have 
the smallest residuals for later consideration. Our 
experience shows that the average phase error 
quickly diminishes as the phase set grows, a conse- 
quence of the increasing overdetermination of the 
system (5) as more and more phases become 
involved. In Table 2, the early steps always give large 
errors, but these fall off quickly as the set of phases 
develops. In our test, the average error of phases 
rapidly diminished to 21.7 ° when 16 phases and 31 
invariants were involved and leveled off at 21.0 ° for 
50 phases and 200 invariants. Then the base of 
phases steadily expanded to 100 and, finally, 250 
(Table 2). Note that by the time estimates of 250 
phases are found, the average phase error has 
increased to 51.9 ° despite the great overdeter- 
mination. This is a consequence of the need to use 
poorly estimated triplets with small A values result- 
ing in increasing numbers of incorrect integer assign- 
ments on the right-hand side of (1). A significant 
improvement employing the minimal function 
approach is described next. 

5. The minimal principle (a digression) 

Identities among the phases 

The normalized structure factors are defined by 
1 N 

En = [Enlexp(iq~n)- U,/2 E exp(2rrH.rj). (6) 
j = l  

N is the number of atoms in the unit cell, for 
simplicity assumed here to be identical, and rj is the 
position vector of the atom labeled j. Since the 

Table 2. 250 phases determined by the trial-and-error 
least-squares method (5) 

No. of phases No. of invariants (1~0 . . . .  I) (°) 
l0 7 116.3 
l0 I l 102.5 
16 31 21.7 
50 200 21.0 

100 679 30.3 
250 3249 51.9 

number of magnitudes lEE[ obtained from the X-ray 
diffraction experiment usually greatly exceeds the 
number of parameters (3N) needed to define the 
crystal structure, elimination of the atomic position 
vectors rj from the system of equations (6) leads to a 
system of identities among the phases qn only, 
dependent on the presumed known magnitudes [El, 
which must of necessity be satisfied: 

G( .IIE.I) = 0. (7) 

The minimal principle 

The minimal function R(~), a function of the 
phases, is defined by: 

where 

E A H K [  c o S T H K  II(AI-IK) ] 2 

H,K t. Io(AnK) J 
R(~o) = ~'~ ArlK 

I-I,K 

(8) 

THK -- ~0H "~" ~K "~" ~ -  H -  K (9)  

ANK = (2/NI/2)[EHEKEH+K[ (10) 

I0 and 11 are the modified Bessel functions, and the 
sums are taken over all reciprocal lattice vectors H, 
K associated with the triplets TnK which are gener- 
ated by a specified basis set of phases {¢} corre- 
sponding to the largest values of IEI. Note that, in 
view of (9), (8) defines R(¢) as a function of the 
phases ~. Then, provided that the basis set of phases 
{¢} is chosen sufficiently large and the phases are 
constrained by the system of identities (7), the mini- 
mal function R(¢) has a constrained global mini- 
mum at the point that all the phases are equal to 
their true values for some choice of origin and 
enantiomorph (the minimal principle). In this way 
the problem of phase determination is replaced by 
the problem of finding the constrained global mini- 
mum of the minimal function R(¢), equation (8), a 
known function of the phases. Methods have been 
devised for finding this minimum and they are 
described elsewhere in this issue (Weeks, DeTitta, 
Miller & Hauptman, 1993). 

An important aspect in the implementation of the 
minimal principle is the ability to calculate ab initio, 
i.e. without prior knowledge of the values of the 
phases, the value, Rr, of this constrained global . . . . . . . . . .  



CONFERENCE PROCEEDINGS 7 

minimum: 

1 [ 
Rr= ½ + ~ Anr 

H,K 

where 

Ang(½t'nr-- t2g)]  < ½ (11) 
H,K 

trig = I,(AnK)/Io(Ang) (12) 

t'nz = 12(Ang)/lo(Ang) (13) 

and the l 's  are the modified Bessel functions. 

6. The minimal function approach employing 
estimated values of the triplets 

Instead of using the estimate tOng in equation (5), 
one may bypass entirely the problem posed by the 
217" ambiguity by employing the estimates cnz and 
SHz for COStOng and sintOmc, respectively, together 
with known weights Ang. Furthermore, in sharp 
contrast to the use of the expected values (IJIo 
alone) used in (8), the following minimal function 
uses the known probabilistic estimates of both co- 
sines and sines with associated (known) weights AnK 
(Hauptman, 1982; Giacovazzo, 1983): 

R(~o) = { Y. Ang[(sinTng - SFIK) 2 
H,K 

+ (coSTnK -- Cnz)2]}/ Z Ang (14) 
H,K 

where Trm is defined by (9). One anticipates that 
those phases are correct which minimize R(q). In 
contrast to the 'pure' direct-methods approach (not 
requiring anomalous intensity data) of Weeks et al., 
which seeks the global minimum of (8) subject to the 
equations of constraint (7), no attempt is made here 
to impose these constraints. In view of the work of 
Weeks et al., it is presumed that the ability to impose 
these constraints would improve the phase deter- 
mination, but how to do this for a macromolecule 
when only a limited low-resolution data set is avail- 
able, is an open question. This method requires 
approximate initial values of the individual phases 
and these can be obtained from the atomic posi- 
tion(s) of a presumed known partial structure or of 
the anomalous scatterer(s). The tests of this method 
are based on the same data for cytochrome c550 as 
used previously. Initial estimates of the phases were 
simply taken to be equal to the phases calculated 
from the Pt position which was assumed to be 
known. Three test results were generated as shown in 
Table 3. All the iterative full-matrix least squares 
were carried out for 20 cycles. As seen from Table 3, 
the large redundancy (50-360) makes this method so 
powerful that it reduces the average triplet error 
(Terror) dramatically and, at the same time, the aver- 
age phase error was reduced by 25-30 ° . Comparison 
of Tables 2 and 3, in particular the final average 

Table 3. Average initial and final triplet and phase 
errors for three different sets of phases based on the 
presumed known Pt position and using the minimal 

function (14) 

D a t a  No.  o f  No.  o f  (ITe,orl) (o) (1~ . . . .  l) (o) 
No.  reflections tr iplets  Ini t ial  Final  Ini t ial  F ina l  

I 503 25244 79.0 44.1 64.1 32.8 
2 994 185264 76.5 49.7 66.3 37.2 
3 1398 504918 78.6 54.2 68.8 42.5 

Table 4. Average initial and final triplet and phase 
errors for 503 phases and 25 244 triplets based on 
presumed known light-atom fragments of cytochrome 
C55o having the number of  atoms shown in column 1 

and employing the minimal function (14) 

No. of (lTe~o,[) (°) (lq ..... [) (°) 
known atoms Initial Final Initial Final 

400 70.6 57.8 39.8 32.5 
300 75.8 57.9 46.4 32.6 
200 81.6 58.2 53.1 32.8 
100 85.5 58.2 64.1 32.8 
75 87.7 57.8 68.5 32.6 
60 87.8 71. I 70.8 46.0 
50 88.6 75.4 73.4 54.3 

phase error of 32.8 ° for the 503 phases of Table 3 
compared with the average error of 51.9 ° for the 250 
phases of Table 2, clearly shows the superior per- 
formance of the minimal function approach (14). 

To investigate the potential use of this method for 
phase refinement, several tests with different starting 
sets of phases were also carried out for the 503 
reflections and 25 244 triplets data set. The results 
are listed in Table 4. All refinements used 20 cycles of 
full-matrix least squares. The results show the very 
strong convergence feature of this method even for 
presumed known all-light-atom fragments consisting 
of as few as 75 atoms. 

7. Discussion 

The number of structure invariants increases drama- 
tically as the number of reflections becomes large. 
Thus 503 reflections generate 25244 structure 
invariants while 1398 phases generate 504 918. The 
largest data set tested consisted of 1979 phases, and 
the resulting 1979 x 1979 full-matrix least-squares 
calculation involved 1 488 228 structure invariants. 
Clearly, enormous computing power is required and 
a huge memory is essential for the successful applica- 
tion of the methods described here. Another impor- 
tant factor is the requirement of an accurate 
anomalous-scattering data set which is needed to 
generate a sufficient number of well estimated struc- 
ture invariants. 

Phase refinement is the most time consuming part 
of a protein structure determination procedure. Our 
test results show that the methods described here 
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have the potential to refine the phases from a set of 
initial values. 
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